SASEGASA: An Evolutionary Algorithm for Retarding Premature Convergence by Self-adaptive Selection Pressure Steering
نویسندگان
چکیده
This paper presents a new generic Evolutionary Algorithm (EA) for retarding the unwanted effects of premature convergence. This is accomplished by a combination of interacting methods. To be intent on this a new selection scheme is introduced, which is designed to maintain the genetic diversity within the population by advantageous self-adaptive steering of selection pressure. Additionally this new selection model enables a quite intuitive condition to detect premature convergence. Based upon this newly postulated basic principle the new selection mechanism is combined with the already proposed Segregative Genetic Algorithm (SEGA) [3], an advanced Genetic Algorithm (GA) that introduces parallelism mainly to improve global solution quality. As a whole, a new generic evolutionary algorithm (SASEGASA) is introduced. The performance of the algorithm is evaluated on a set of characteristic benchmark problems. Computational results show that the new method is capable of producing highest quality solutions without any problem-specific additions.
منابع مشابه
SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results
This paper presents a new generic Evolutionary Algorithm (EA) for retarding the unwanted effects of premature convergence. This is accomplished by a combination of interacting generic methods. These generalizations of a Genetic Algorithm (GA) are inspired by population genetics and take advantage of the interactions between genetic drift and migration. In this regard a new selection scheme is i...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملChoosing selection pressure for wide-gap problems
To exploit an evolutionary algorithm’s performance to the full extent, the selection scheme should be chosen carefully. Empirically, it is commonly acknowledged that low selection pressure can prevent an evolutionary algorithm from premature convergence, and is thereby more suitable for wide-gap problems. However, there are few theoretical time complexity studies that actually give the conditio...
متن کاملPressure Control for a Hydraulic Cylinder Based on a Self-Tuning PID Controller Optimized by a Hybrid Optimization Algorithm
In order to improve the performance of the hydraulic support electro-hydraulic control system test platform, a self-tuning proportion integration differentiation (PID) controller is proposed to imitate the actual pressure of the hydraulic support. To avoid the premature convergence and to improve the convergence velocity for tuning PID parameters, the PID controller is optimized with a hybrid o...
متن کاملA Self-adaptive Multipeak Artificial Immune Genetic Algorithm
Genetic algorithm is a global probability search algorithm developed by simulating the biological natural selection and genetic evolution mechanism and it has excellent global search ability, however, in practical applications, premature convergence occurs easily in the genetic algorithm. This paper proposes an self-adaptive multi-peak immune genetic algorithm (SMIGA) and this algorithm integra...
متن کامل